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Abstract

We propose a novel framework to conduct
field extraction from forms with unlabeled
data. To bootstrap the training process, we de-
velop a rule-based method for mining noisy
pseudo-labels from unlabeled forms. Using
the supervisory signal from the pseudo-labels,
we extract a discriminative token representa-
tion from a transformer-based model by mod-
eling the interaction between text in the form.
To prevent the model from overfitting to la-
bel noise, we introduce a refinement module
based on a progressive pseudo-label ensemble.
Experimental results demonstrate the effective-
ness of our framework.

1 Introduction

Form-like documents, such as invoices, paystubs
and patient referral forms, are very common in
daily business workflows. A large amount of hu-
man effort is required to extract information from
forms every day. In form processing, a worker is
usually given a list of expected form fields (e.g.,
purchase_order, invoice_number and total_amount
in Figure 1), and the goal is to extract their corre-
sponding values based on the understanding of the
form, where keys are generally the most important
features for value localization. A field extraction
system aims to automatically extract field values
from redundant information in forms, which is cru-
cial for improving processing efficiency and reduc-
ing human labor.

Field extraction from forms is a challenging task.
Document layouts and text representations can be
very different even for the same form type, if they
are from different vendors. For example, invoices
from different companies may have significantly
different designs (see Figure 3). Paystubs from
different systems (e.g., ADP and Workday) have
different representations for similar information.

Recent methods formulate this problem as field-
value pairing or field tagging. Majumder et al.

INVOICE #: 1234

PO Number:

Company LOGO

Field (purchase_order): [PO Number, PO #]
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Figure 1: Field extraction from forms is to ex-
tract the value for each field, e.g., invoice_number,
purchase_order and total_amount, in a given list. A
key, e.g., INVOICE#, PO Number and Total, refers to
a concrete text representation of a field in a form and it
is an important indicator for value localization.

(2020) propose a representation learning method
that takes field and value candidates as inputs and
utilizes metric learning techniques to enforce high
pairing score for positive field-value pairs and low
score for negative ones. LayoutLM (Xu et al.,
2020) is a pretrained transformer that takes both
text and their locations as inputs. It can be used
as a field-tagger which predicts field tags for in-
put texts. These methods show promising results,
but they require large amount of field-level annota-
tions for training. Acquiring field-level annotations
of forms is challenging and sometimes even im-
possible since (1) forms usually contain sensitive
information, so there is limited public data avail-
able; (2) working with external annotators is also
infeasible, due to the risk of exposing private in-
formation and (3) annotating field-level labels is
time-consuming and hard to scale.

Motivated by these reasons, we propose a field
extraction system that does not require field-level
annotations for training (see Figure 2). First, we
bootstrap the training process by mining pseudo-
labels from unlabeled forms using simple rules.
Then, a transformer-based architecture is used to



model interactions between text tokens in the form
and predict a field tag for each token accordingly.
The pseudo-labels are used to supervise the trans-
former training. Since the pseudo-labels are noisy,
we propose a refinement module to improve the
learning process. Specifically, the refinement mod-
ule contains a sequence of branches, each of which
conducts field tagging and generates refined labels.
At each stage, a branch is optimized by the labels
ensembled from all previous branches to reduce
label noise. Our method shows strong performance
on real invoice datasets. Each designed module is
validated via comprehensive ablation experiments.

Our contribution is summarized as follows: (1)
to the best of our knowledge, this is the first work
that addresses the problem of field extraction from
forms without using field-level labels; (2) we pro-
pose a novel training framework where simple rules
are first used to bootstrap the training process and
a transformer-based model is used to improve per-
formance; (3) our proposed refinement module is
demonstrated as effective to improve model per-
formance when trained with noisy labels and (4)
to facilitate future research, we introduce the INV-
CDIP dataset as a public benchmark. The dataset is
available at https://github.com/salesforce/inv-cdip.

2 Related Work

2.1 Form understanding

Form understanding is a widely researched area.
Earlier work formulated the problem as an instance
segmentation task. Chargrid (Katti et al., 2018)
encodes each page of form as a two-dimensional
grid of characters, and extracts header and line
items from forms using fully convolutional net-
works. Based on Chargrid, Denk and Reisswig
(2019) propose BERTgrid which uses a grid of con-
textualized word embedding vectors to represent
documents. These methods are limited in scenar-
ios where the image resolution is not high enough
leading to sub-optimal representation of ambiguous
structures in dense regions. To mitigate the issue,
later methods work on structure modeling. Aggar-
wal et al. (2020) introduce Form2Seq to leverage
relative spatial arrangement of structures via first
conducting low-level element classification and
then high-order grouping. DocStruct (Wang et al.,
2020) encodes the form structure as a graph-like
hierarchy of text fragments and designs a hybrid
fusion method to provide joint representation from
multiple modalities. Benefiting from the recent

advances of transformers (Vaswani et al., 2017),
LayoutLM (Xu et al., 2020) learns text represen-
tation via modeling the interaction between text
tokens and their locations in documents.

There are dedicated methods focusing on field
extraction. Some methods (Chiticariu et al., 2013;
Schuster et al., 2013) extract information from doc-
ument via registering templates in the system. Palm
et al. (2019) propose an Attend, Copy, Parse ar-
chitecture to extract field values of invoices. Ma-
jumder et al. (2020) present a metric learning frame-
work that learns the representation of the value can-
didate based on its nearby words and matches the
field-value pairs using a learned scoring function.
Gao et al. (2021) propose a general value extraction
system for arbitrary queries and introduce a simple
pretraining strategy to improve document under-
standing. Although existing approaches demon-
strate promising results in different settings, they
rely on large-scale annotated data for training. For
example, Majumder et al. (2020) used more than
11,000 invoices in distinct templates for training.

2.2 Form datasets

Form datasets for field extraction tasks are typically
private, since these documents generally contain
sensitive information. There are existing public
datasets for general form understanding. RVL-
CDIP (Harley et al., 2015) and DocVQA (Mathew
et al., 2021) are introduced for document classifica-
tion and question answering tasks. FUNSD (Jaume
et al., 2019) dataset is organized as a list of in-
terlinked semantic entities, i.e., question, answer,
header and other. CORD (Park et al., 2019) is
a public receipt dataset focusing on line items.
SROIE (Huang et al., 2019) is the most related
dataset which aims to extract information for four
receipt-related fields. However, their layouts across
different receipts are very fixed, which makes it less
challenging, thus not suitable for our task. For ex-
ample, the values of fields, company and address,
are always on the very top in all the receipts. The
lack of appropriate public datasets makes it diffi-
cult to compare existing field extraction methods
on realistic forms. Xue et al. (2021) introduce a
framework to augment diverse forms from a small
set of annotated forms for robust evaluation. In this
work, we introduce a challenging and real invoice
dataset that is made publicly available to future
research.

https://github.com/salesforce/inv-cdip


Figure 2: Our method takes words,wi , and their locations,bi , in a form into a transformer. The transformer extracts
representative features for each token via the self-attention mechanism. Since our method is trained using forms
with no �eld labels, we design progressive label ensemble module to enable the training process. We bootstrap the
initial pseudo-labels,̂l0, using simple rules. Then, token representations go through several branches and do the
�eld prediction as well as label re�nement. Each branch,j , is optimized with labels ensembled from all previous
branches,̂l0; l̂1; :::; l̂ j � 1.

3 Field Extraction from Forms

3.1 Problem Formulation

We are interested in information of �elds in a pre-
de�ned list, f fd 1; fd 2; :::; fd N g. Given a form
as input, a general OCR detection and recogni-
tion module is applied to obtain a set of words,
f w1; w2; :::; wM g, with their locations represented
as bounding boxes,f b1; b2; :::; bM g. The goal of a
�eld extraction method is to automatically extract
the target value,vi , of �eld, fd i , from the mas-
sive word candidates if the information of the �eld
exists in the input form.

Unlike previous methods that have access to
large-scale labeled forms, the proposed method can
be trained using unlabeled documents with known
form types. To achieve this goal, we propose a
simple rule-based method to mine noisy pseudo-
labels from unlabeled data (Sec. 3.2) and introduce
a data-driven method with a re�nement module to
improve training with noisy labels (Sec. 3.3).

3.2 Bootstrap: Pseudo-Labels Inference from
Unlabeled Data

To bootstrap the training process, given unlabeled
forms, we �rst mine pseudo-labels using a simple
rule-based algorithm. The algorithm is motivated
by the following observations: (1) a �eld value usu-
ally shows together with some key and the key is
a concrete text representation of the �eld (see Fig-
ure 1); (2) the keys and their corresponding values
have strong geometric relations. As shown in Fig-
ure 1, the keys are mostly next to their values verti-
cally or horizontally; (3) although the form's layout

is very diverse, there are usually some key-texts
that frequently used in different form instances. For
example, the key-texts of the �eldpurchase_order
can be “PO Number", “PO #" etc. and (4) inspired
by Majumder et al. (2020), the �eld values are al-
ways associated with some data type. For example,
the data type of values of "invoice_date" isdate
and that of "total_amount" ismoneyor number.

Based on the above observations, we design a
simple rule-based method that can ef�ciently get
useful pseudo-labels for each �eld of interest from
large-scale forms. As shown in Figure 1, key local-
ization is �rst conducted based on string-matching
between text in a form and possible key strings of
a �eld. Then, values are estimated based on data
types of the text and their geometric relationship
with the localized key.
Key Localization. Since keys and values may
contain multiple words, we obtain phrase can-
didates, [ph1

i ; ph2
i ; :::; phT

i ], and their locations
[B 1

i ; B 2
i ; :::; B T

i ] in the form by grouping nearby
recognized words based on their locations using
DBSCAN algorithm (Ester et al., 1996). For each
�eld of interest,fd i , we design a list of frequently
used keys,[k1

i ; k2
i ; :::; kL

i ], based on domain knowl-
edge. In practice, we can also use the �eld name
as the only key in the list. Then, we measure the
string distance1 between a phrase candidate,phj

i ,
and each designed key,kr

i , asd(phj
i ; kr

i ). We cal-
culate the key score for each phrase candidate indi-
cating how likely this candidate is to be a key for
the �eld using Eq. 1. Finally, the key is localized

1Without loss of generality, Jaro–Winkler distance (Win-
kler, 1990) is used in this work.



by �nding the candidate with the largest key score
as in Eq. 2.

key_score(phj
i ) = 1 � min

r 2f 1;2;:::;L g
d(phj

i ; kr
i ):

(1)

k̂i = argmax
j 2f 1;2;:::;T g

key_score(phj
i ): (2)

Value Estimation. Values are estimated following
two criteria. First, their data type should be in line
with their �elds. Second, their locations should
accord well with the localized keys. For each �eld,
we design a list of eligible data type (see Table A1
in the appendix, Sec. A). A pretrained BERT-based
NER model (Devlin et al., 2019) is used to predict
the data type of each phrase candidate and we only
keep the candidates,phj

i , with the correct data type.
Next, we assign a value score for each eligible

candidate,phj
i as in Eq. 3, wherekey_score(k̂i )

indicates the key score of the localized key and
g(phj

i ; k̂i ) denotes the geometric relation score be-
tween the candidate and the localized key. Intu-
itively, the key and its value are generally close
to each other and the values are likely to just
beneath the key or reside on their right side as
shown in Figure 1. So, we use distance and an-
gles to measure key-value relation as shown in
Eq. 4, wheredist j ! r

i indicates the distance of two
phrases,anglej ! r

i indicates the angle fromphj
i

to phr
i and�( :j�; � ) indicates Gaussian function

with � as mean and� as standard deviation. Here,
we set� d to 0. � d and� a are �xed to 0.5. We want
to reward the candidates whose angle with respect
to the key is close either to 0 or�= 2, so we take the
maximum angle score of these two options.

value_score(phj
i ) = key_score(k̂i ) � g(k̂i ; phj

i ):
(3)

g(phj
i ; phr

i ) = �( dist j ! r
i j� d; � d)

+ � max
� a 2f 0;�= 2g

�( anglej ! r
i j� a; � a):

(4)

v̂i = argmax
j 2f 1;2;:::;T g;ph j

i 6= k̂ i

value_score(phj
i ): (5)

We determine a candidate as the predicted value
for a �eld if its value score is the largest among
all candidates as in Eq. 5 and the score exceeds a
threshold,� v = 0 :1.

3.3 Re�nement with Progressive
Pseudo-Labels Ensemble (PLE)

The above rule can be used directly as a simple
�eld extraction method. To further improve perfor-
mance, we can learn a data-driven model using the
estimated values of �elds as pseudo-labels during
training. We formulate this as a token classi�cation
task, where the input is a set of tokens extracted
from a form and the output is the predicted �eld
including background for each token.
Feature Backbone. To predict the target label of
a word, we need to understand the meaning of this
word as well as its interaction with the surrounding
context. Transformer-based architecture is a good
�t to learn the word's representation for its great
capability of modeling contextual information. Ex-
cept for the semantic representation, the word's
location and the general layout of the input form
are also important and could be used to capture dis-
criminative features of words. In practice, we used
the recently proposed LayoutLM (Xu et al., 2020)
as the default backbone and also experimented with
other transformer-based structures in Sec. 4.
Field Classi�cation. Field prediction scores,
sk , are obtained by projecting the features to
the �eld space (f background; fd1; fd 2; :::; fd N g)
via fully connected (FC) layers.
Progressive Pseudo-Labels Ensemble. Initial
word-level �eld labels (also referred to as Boot-
strap Labels),̂l0, are obtained by the estimated
pseudo-labels from Sec. 3.2 and the network can be
optimized using cross entropy loss,L (sk ; l̂0). How-
ever, naively using the noisy labels can degrade the
model performance. We introduce a re�nement
module to tackle this issue. As shown in Figure 2,
we use a sequence of classi�cation branches, where
each branch,j , conducts �eld classi�cation inde-
pendently and re�nes pseudo-labels,l̂ j , based on
their predictions. A later-stage branch is optimized
using the re�ned labels obtained from previous
branches. The �nal loss aggregates all the losses as

L total = L(s1; l̂0)+
KX

k=2

k� 1X

j =1

(L (sk ; l̂ j )+ �L (sk ; l̂0)) ;

(6)
where� is a hyper parameter controlling the con-
tribution of the initial pseudo-labels.

At branchk, we generate re�ned labels accord-
ing to the following steps: (1) �nd the predicted
�eld label, ^fd , for each word by argmax

c2f 0;1;:::;N g
skc and



(2) for each positive �eld, only keep the word if its
prediction score is the highest among all the words
and larger than a threshold (�xed to 0.1).

Intuitively, each branch can be improved by us-
ing more accurate labels and its generated labels
are further re�ned. This progressive re�nement of
labels reduces label noise. Similar idea has been
used in weakly supervised object detection (Tang
et al., 2017). However, we �nd that using only the
re�ned labels in each stage is limited in our setting,
because although the labels become more precise
after re�nement, some low-con�dent values are �l-
tered out which results in lower recall. To alleviate
this issue, we optimize a branch with the ensem-
bled labels from all previous stages. We believe
that the ensembeled labels can not only keep a bet-
ter balance between precision and recall, but also
are more diverse and can serve as a regularization
for model optimization. During inference, we use
the average score predicted from all branches. We
follow the same procedure to get �nal �eld values
as we generate re�ne labels.

4 Experiments and Results

4.1 Datasets

IN-Invoice Dataset. We internally collect real in-
voices from different vendors. These invoice im-
ages are converted from real PDFs, so they are
in high resolution with clean background. The
train set contains 7,664unlabeled invoice forms
of 2,711 vendors. The validation set contains
348 labeled invoices of 222 vendors. The test
set contains 339labeledinvoices of 222 vendors.
We manually ensure that at most 5 images are
from the same vendor in each set. Following Ma-
jumder et al. (2020), we consider 7 frequently used
�elds including invoice_number, purchase_order,
invoice_date, due_date, amount_due, total_amount
andtotal_tax.
INV-CDIP . This dataset is from the Tobacco Col-
lections of Industry Documents Library2, a pub-
licly accessible resource. The dataset contains 200k
noisy documents. We only keep the �rst page of
each document, since the invoice information is
most likely to show in page one. To reduce the
number of noisy samples, we only train on docu-
ments if they have 50-300 words (detected by our
OCR engine) and more than 3 invoice �elds are
found by our rule-based method in Sec. 3.2. As a
result, we have 129k unlabeled training samples.

2https://www.industrydocuments.ucsf.edu/.

For model evaluation, we manually select 350
real invoices as the test set and annotate the 7 �elds
mentioned above. We note that images of this
dataset have lower quality and more clutter back-
ground (see Figure 3) which make them more chal-
lenging than the IN-Invoice dataset.

More information of the datasets is illustrated in
the appendix (Sec. A).

4.2 Evaluation Metric

We use the macro-average of end-to-end F1 score
over �elds as a metric to evaluate models. Speci�-
cally, exact string matching between our predicted
values and the ground-truth ones is used to count
true positive, false positive and false negative. Pre-
cision, recall and F1 score is obtained accordingly
for each �eld. The reported scores are averaged
over 5 runs to reduce the effect of randomness.

4.3 Baselines

It is challenging to compare our method with exist-
ing �eld extraction systems, since they have been
evaluated using different datasets in different set-
tings. To the best of our knowledge, there are no
existing methods that perform �eld extraction us-
ing only unlabeled data. So, we build the following
baselines to validate our method.
Bootstrap Labels (B-Labels): the proposed sim-
ple rules in Sec. 3.2 can be used to do �eld ex-
traction directly without training data. So, we �rst
show the effectiveness of this method and set up a
baseline for later comparison.
Transformers train with B-Labels : since we use
transformers as the backbone to extract features
of words, we train transformer models using the
B-Labels as baselines to evaluate the performance
gain from (1) the data-driven models in the pipeline
and (2) the re�nement module. Both the content
of the text and its location are important for �eld
prediction. So, our default transformer backbone
is LayoutLM (Xu et al., 2020) which takes both
text and location as input. Further, we also exper-
iment with two popular transformer models, i.e.,
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), which take only text as input.

4.4 Implementation Details

. Our framework is implemented using Pytorch and
the experiments are conducted with Tesla V100
GPUs. We use a commercial OCR engine3 to de-

3https://api.einstein.ai/signup



tect words and their locations and use Tesseract4

to rank the words in reading order. The key list
and data type used in Sec. 3.2 for each dataset are
shown in Table A1 in Sec. A. As we can see, the
key lists and data types are quite broad. We set�
in Eq. 4 to 4.0. To further remove false positives,
we remove the value candidates if the localized
key is not within its neighboring zone. Speci�cally,
we de�ne the neighboring zone around the value
candidate extending all the way to the left of the
image, four candidate heights above it and one can-
didate height below it. We keep the re�ne branch
numberk = 3 for all experiments. We add one hid-
den FC layer with 768 units before classi�cation
when stage number is> 1. We �x � in Eq. 6 to be
1.0 for all invoice experiments, except that we use
� = 5 :0 for BERT-base re�nement in Table 3 due
to its better performance in the validation set. For
both our model and baselines, we train models for
2 epochs and pick the model with the best F1 score
in validation set. To prevent over�tting, we adopt a
two-step training strategy, where the pseudo-labels
are used to train the �rst branch of our model and
then we �x the �rst branch along with the feature
extractor during the re�nement. We set batch size
to 8 and use the Adam optimizer with learning rate
of 5e� 5.

4.5 Comparison with Baselines

Main Comparison. We primarily validate our de-
sign using our IN-Invoice dateset, since it contains
large-scale clean, unlabeled training data and suf�-
cient amount of valid/test data. We �rst validate our
method using LayoutLM (our default choice) as the
backbone. The comparison results are shown in Ta-
ble 1 and Table 2. The Bootstrap Labels (B-Labels)
baseline achieves 43.8% and 44.1% F1 score in
valid and test sets, which indicates that our B-
Labels have reasonable accuracy, but are still noisy.
When we use the B-Labels to train a LayoutLM
transformer, we obtain a signi�cant performance
improvement,� 15% increase in valid set and
� 17% in test set. We tried both LayoutLM-base
(113M parameters) and LayoutLM-large (343M
parameters) models as backbones and we did not
see performance improvement when using a larger
model. Adding our re�nement module signi�cantly
improves model precision,� 6% in valid set and
� 7% in test set, while slightly decreasing the recall,
� 2.5% in valid set and� 3% in test set. This is

4https://github.com/tesseract-ocr/tesseract

because the re�ne labels become more and more
con�dent in later stages leading to higher model
precision. However, the re�nement stage also re-
moves some low con�dence false negatives which
results in lower recall. Overall, our re�nement
module further improves performance, resulting in
a gain of� 3% in F1 score.

Results with Different Transformers. We use
LayoutLM as the default feature backbone, since
both the text and its location is important for
our task. To understand the impact of different
transformer models as backbone, we experiment
with two additional models, BERT and RoBERTa,
where only text is used as input. The comparison
results are shown in Table 3 and Table 4. We have
the following observations: (1) we still obtain large
improvement when training BERT and RoBERTa
directly using our B-Labels and (2) our re�ne-
ment module consistently improves the baseline
results for different transformer choices with differ-
ent amount of parameters (base or large). Moreover,
LayoutLM yields much higher results compared to
the other two backbones, which indicates that the
text location is indeed very important for obtaining
good performance in our task.

Evaluation on INV-CDIP Test Set. We evaluate
our models trained using IN-Invoice data directly
on the introduced INV-CDIP test set in Table 5. Our
simple rule-based method obtains 25.1% F1 score
which is reasonable, but much lower compared to
the results on our internal IN-Invoice dataset. The
reason is that the INV-CDIP test set is visually
noisy which results in more OCR recognition er-
rors. The LayoutLM baselines still obtain large
improvements over the B-Labels baseline. Also,
our re�nement module further improves more than
2% in F1 score. The results suggest that our method
adapts well to the new dataset. We show some visu-
alizations in Figure 3. We can see that our method
obtains good performance, although the invoices
are very diverse across different templates, have
cluttered background and are in low resolution.

Learning from Noisy INV-CDIP Data . Although
web data is noisy, it can be freely obtained from
the internet. We train our model and the baseline
model using the unlabeled train set of the noisy
INV-CDIP dataset. The comparison results are
shown in Table 6. As we can see, our method per-
forms well and our PLE module can still improves
the baseline by about 2-3%, although the training
set is very noisy.



Figure 3: Visualization of our method on the INV-CDIP test set. Correct predictions are marked in red font.
Incorrect predictions are marked in blue (due to �eld extractor error) and purple (due to OCR recognition error).

Model Labels Prec. Rec. F1
Bootstrap Labels – 40.5 50.7 43.8

LayoutLM-base

B-Labels

54.8 66.6 59.2
+ PLE 60.9 64.0 61.9
LayoutLM-large 55.2 65.6 58.8
+ PLE 61.3 63.2 61.8

Table 1: Comparison with baselines on IN-Invoice
valid set. Models are trained using the unlabeled IN-
Invoice train set.

Model Labels Prec. Rec. F1
Bootstrap Labels – 41.0 50.9 44.1

LayoutLM-base

B-Labels

57.5 67.6 61.2
+ PLE 64.7 64.5 63.8
LayoutLM-large 58.2 67.1 61.0
+ PLE 65.6 64.0 64.1

Table 2: Comparison with baselines on IN-Invoice test
set. Models are trained using the unlabeled IN-Invoice
train set.

4.6 Ablation Study

We conduct ablation study on the IN-Invoice
dataset with LayoutLM-base as the backbone.
Effect of Stage Numbers. Our model is re�ned
in k stages, wherek = 3 in all experiments. We
evaluate our method with varying stage numbers.
As we can see in Figure 4, when we increase the
stage number,k, the model generally performs
better on both valid and test sets. The perfor-
mance with more than one stage is always higher
than the single-stage model (our transformer base-
line). Model performance reaches the highest when
k = 3 . As shown in Figure 5, precision improves
while recall drops during model re�nement. When
k = 3 , we obtain the best balance between preci-

Model Labels Prec. Rec. F1
Bootstrap Labels – 40.5 50.7 43.8

BERT-base

B-Labels

48.8 59.6 52.8
+ PLE 49.9 59.3 53.4
BERT-large 53.7 60.9 56.5
+ PLE 58.0 59.4 58.1
RoBERTa-base 55.1 60.5 57.2
+ PLE 59.9 58.0 58.5
RoBERTa-large 55.3 61.8 57.8
+ PLE 60.5 60.1 59.1

Table 3: Comparison using different transformers on
IN-Invoice valid set. Models are trained using the unla-
beled IN-Invoice train set.

Figure 4: Comparison results with varying stage num-
bers. When stage number is 1, the model becomes the
LayoutLM baseline.

sion and recall. Whenk > 3 recall drops more than
precision improves, leading to a lower F1 score.
Effect of Re�ned Labels (R-Labels). As shown
in Figure 2, the R-Labels obtained in each stage
are used in later stages. To analyze the effect of
this design, we remove the re�ned labels in the


